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ABSTRACT 

ASSOCIATION BETWEEN HUMAN SPERM MORPHOLOGY AND ANEUPLOIDY 

USING FLUORESCENT IN SITU HYBRIDIZATION. Jillian S. Catalanotti, Ciler 

Celik-Ozenci, and Gabor Huszar. Sperm Physiology Laboratory, Department of 

Obstetrics and Gynecology, Yale University, New Haven, CT. 

With the increased use of assisted reproduction technology requiring manual 

spenn selection based on sperm shape, such as intracytoplasmic sperm injection (ICSI), a 

potential relationship between sperm morphology and chromosomal abnormalities is a 

major concern. In order to assess the feasibility of simultaneous evaluation of both 

attributes in an individual sperm cell, we investigated whether sperm shape is preserved 

after decondensation and denaturation as required for fluorescent in situ hybridization 

(FISH). We studied 395 spermatozoa using computer assisted morphometry, considering 

various head size, shape, and roundness parameters. Decondensation and denaturation 

were then performed, and sperm that were studied initially were re-localized and 

measured. To establish whether sperm of normal and abnormal shapes would behave in a 

similar manner in response to decondensation, the sperm were classified according to 

their head shapes into symmetrical (n=l 15), asymmetrical (n=l 15), irregular (n=l 15) and 

amorphous (n=50) categories. Initial shape was preserved in all morphological categories 

as measured either by shape factor (asymmetrical: 0% change, p > 0.05; irregular: 1.2% 

change, p > 0.05), by roundness ratio (symmetrical: 0% change, p > 0.05), or by both 

(amorphous: 0% change in roundness ratio, p > 0.05, 1.3% change in shape factor, p > 

0.05). Overall, decondensation according to the FISH protocol does not significantly 

change sperm shape. FISH can be used to evaluate a potential relationship between 

sperm morphology and numerical chromosomal abnormalities in an individual sperm. 
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INTRODUCTION 

Intracytoplasmic Sperm Injection 

Human semen always contains a relatively high percentage of structurally 

abnormal spermatozoa. (1) Ordinarily, immature sperm do not complete plasma 

membrane remodeling to form zona pellucida binding sites, and are therefore outside of 

the potential fertilization pool. However, assisted reproduction techniques, most notably 

intracytoplasmic sperm injection (ICSI), may bypass this natural selection process and 

introduce the possibility of ovum fertilization by immature spermatozoa. ICSI is a 

particular type of in vitro fertilization (IVF) that requires only one sperm for successful 

fertilization and obviates the need for sperm to independently penetrate the zona 

pellucida. It is recommended for couples with severe male-factor infertility, including 

oligospermia (< 20 x 106 sperm/mL), asthenospermia (< 50% of sperm having forward 

motion or < 25% with rapid linear motion), teratospermia (< 30% morphologically 

normal forms), oligoasthenoteratozoospermia (combination of all three of the 

aforementioned characteristics), acrosomal dysfunction, and obstructive azoospermia 

(absence of sperm in the ejaculate due to obstruction between the testes and the urethral 

meatus). ICSI begins with oocyte retrieval, as in conventional IVF procedures. Using 

microscopic visualization, a single motile, morphologically normal sperm is aspirated 

into a micropipette and microinjected beneath the zona pellucida of the harvested oocyte, 

directly into its ooplasm. If normal fertilization occurs, embryo transfer is performed as 

in conventional IVF. 

Current use of ICSI for male factor infertility has met with great success. 

Preliminary results concerning ICSI pregnancies have not revealed a higher incidence of 
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spontaneous abortion than after routine IVF. (2) Additionally, the rate of major 

malformations leading to functional impairment or necessitating surgery after birth is 

comparable to that seen in both IVF and natural conception. (3) Numerous studies, 

however, have found a significantly increased incidence of sex chromosomal aberrations 

in children bom after ICSI. (2,3,4,5) Some studies have found that sex chromosome 

abnormalities are increased as much as four- to five-fold in ICSI offspring. (4) Sperm 

from infertile men requiring ICSI have shown a higher incidence of sex chromosomal 

aneuploidy due to nondisjunction than do sperm from fertile men. (5) The use of ICSI, 

therefore, clearly raises the need for genetic screening of individual spermatozoa. 

Sperm Maturation 

Sperm development, called spermatogenesis, consists of three main processes: 

mitosis, meiosis, and spermiogenesis. (Figure 1.) Diploid spermatogonia undergo 

mitotic proliferation to maintain a continuous supply of germ cells. Some of these 

spermatogonia undergo DNA replication, at which point they are labeled primary 

spermatocytes. These cells complete meiosis to become haploid spermatids. During 

spermiogenesis (also called sperm differentiation), extensive remodeling of spermatids, 

including development of the acrosome, tail growth, and cytoplasmic extrusion, results in 

highly specialized, mobile spermatozoa. 

The extrusion of cytoplasm is an important step in acquiring the appropriate shape 

of mature sperm. Due to cytoplasmic retention, immature sperm frequently have 

abnormal morphology, such as asymmetrical or round heads. Because normal sperm 

differentiation begins only after meiotic division is completed, it is tempting to speculate 
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that a disruption of the mechanisms controlling the early stages of meiosis may be 

associated with inappropriate sperm development, with the subsequent production of 

more aneuploid and morphologically abnormal spermatozoa. (7) 

Sperm Morphology> 

The evaluation of sperm morphology has been a difficult and inconsistent science 

which must take into account a great deal of natural variation. Examination of sperm 

recovered from postcoital cervical mucus or from the surface of zona pellucidae has 

helped to define the appearance of a normal spermatozoon. Complete assessment of 

sperm shape includes analysis of the head, neck, midpiece, and tail. In general, clinical 

laboratories use sperm morphology parameters proposed by the World Health 

Organization (WHO), the so-called “strict morphology,” developed by Kruger, which is 

based on shape properties of sperm bound to the zona pellucida in IVF. (8) For a 

spermatozoon to be considered normal, the head should be oval and symmetrical, with 

the ratio of the longitudinal and transverse diameters approximately 2:1. Insertion of the 
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tail should be axial (in line with the long axis of the head). Abnormal morphologic 

variants include heads that are large, small, round, or amorphous; midpieces that bulge or 

taper; or sperm with multiple heads or tails. The Huszar laboratory at Yale University has 

developed objective computer-assisted morphometry for the assessment of sperm shape 

and has utilized biochemical markers to more accurately assess the relationship between 

sperm shape, sperm maturity, and function. (9) 

Biochemical Markers of Sperm Maturity 

Germ cells are believed to contain the genetic programming necessary to guide 

their complex differentiation and development. Through developmental regulation of 

gene expression, the synthesis of specific proteins coincides with distinct phases of 

gametogenesis, and may likely guide the transition between phases. An evaluation of the 

cyclical expression of proteins in sperm maturation may, therefore, lead to biochemical 

markers of sperm maturity. 

One potential biochemical marker of sperm maturity is the concentration of 

creatine phosphokinase (CK) in sperm. (10) CK-B, a cytoplasmic enzyme, is a marker of 

cytoplasmic extrusion during spermiogenesis. High levels of CK-B in sperm indicate 

cytoplasmic retention and have been associated with decreased fertility. (4) CK 

immunochemistry studies of individual spermatozoa have also demonstrated a 

relationship between cytoplasmic retention and abnormal spenn morphology, including 

larger head size, round heads, and amorphous heads. (11) Furthermore, it has been 

shown in CK-immunostained sperm-hemizona complexes that sperm which bind to the 
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zona are exclusively those of the normal mature type, without CK-B or cytoplasmic 

retention. (12) 

A related biochemical marker of sperm maturation is the testis-specific chaperone 

protein HspA2, a member of the highly conserved Hsp70 chaperone family which has 

been thoroughly investigated in the mouse. (13) The Huszar laboratory has identified two 

waves of expression of HspA2 in human sperm development: in spermatocytes 

undergoing meiosis, and in spermatids undergoing spermiogenic maturation. (14) HspA2 

first appears in primary and secondary spermatocytes likely as a component of the 

synaptonemal complex, the structure formed between homologous chromosomes during 

their synapsis in meiosis. The second wave of expression occurs during terminal 

spermiogenesis, along with cytoplasmic extrusion, plasma membrane remodeling, and 

formation of zona-binding sites. The Huszar laboratory has suggested that the underlying 

factor in both sperm immaturity and chromosomal aneuploidies is diminished HspA2 

expression, which may cause both the higher incidence of disomies due to meiotic 

nondisjunction and the abnormal shape of immature sperm due to cytoplasmic retention. 

It has been shown that sperm morphology and the expression of HspA2 (as well as other 

biochemical markers) are related, because both reflect the state of spermiogenic maturity. 

(4) 

HspA2 and Morphology 

Gergely et. al. established the relationship between sperm morphology and HspA2 

as a biochemical marker of sperm maturity. (9) Three sperm fractions were separated by 

sequential centrifugation based on the observation that immature spermatozoa with 
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cytoplasmic retention have lower density than normal sperm. The HspA2 ratios 

[%HspA2/(HspA2 + CK-B)], differed significantly between the A, B, and C fractions: 

HspA2 ratios were uniformly highest in the first, most dense fraction, which contains the 

least cytoplasm, and lowest in the third fraction. Decreased HspA2 ratios in immature 

spermatozoa are associated with cytoplasmic retention. 

Role of HspA2 in Meiosis 

In addition to its expression in spermatids and mature sperm, HspA2 is found in 

spermatocytes at low levels, where it is believed to chaperone meiosis. (14) In mice, a 

cascade of interactions, including those between Hsp70-2 and downstream cyclins and 

kinases, is responsible for the G2-to~M transition of meiosis II. (13) 

A second potential role for HspA2 in meiosis is in directly chaperoning the 

disjunction of homologous chromosomes. Although the presence of HspA2 has not yet 

been demonstrated in human sperm synaptonemal complexes, Hsp70-2 has been found in 

rodent models. In mice lacking Hsp70-2, synaptonemal complexes fragment early in 

meiosis and paired chromosomes fail to desynapse. (13) Hsp70-2 expression 

abnormalities are therefore thought to be related to aneuploidies through their role in 

nondisjunction. 

Bridging Morphology and Numerical Chromosomal Abnormalities 

Numerical chromosomal abnormalities in sperm consist of aneuploidies or 

diploidies. In aneuploidy, a sperm cel! possesses more or less than one copy of an 

autosomal or sex chromosome; in diploidy, a sperm possesses two copies of the entire 
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genome. It is difficult to estimate the true frequency of paternally-derived autosomal 

aneuploidies because most trisomies are eliminated early in embryogenesis. (7) 

Several studies have demonstrated an association between sperm shape properties 

and numerical chromosomal abnormalities. Compared to the general male population, 

men with oligoasthenoteratozoospermia have a higher incidence of numerical 

chromosomal abnormalities (2.7% vs. 1.8%), suggesting that these patients produce 

higher proportions of aneuploid gametes. (15) Aneuploidy frequency in infertile males 

has been directly correlated with severity of oligospermia (2) and indirectly correlated 

with sperm motility. (7) Furthermore, infertile men with normal karyotypes and low 

sperm concentrations or higher levels of morphologically abnormal sperm have 

significantly increased risks of producing aneuploid spermatozoa, particularly for the sex 

chromosomes. (14) 

A thorough review of the literature, however, reveals an inconsistent association 

between sperm morphology and numerical chromosomal abnormalities. Although Lee et 

al. (1) found that the incidence of structural chromosomal aberrations were approximately 

four-fold higher in semen samples with high frequencies of sperm having amorphous, 

round, or elongated heads as compared to those with more morphologically normal 

sperm, no significant difference was noted in the incidence of aneuploidies. Additionally, 

a case study of men with increased levels of globozoospermia (sperm that lack 

acrosomes), shortened flagella syndrome, or sperm with abnormal acrosomes, no 

association was found between sperm shape and chromosomal status. (19) Furthermore, 

Ryu et al. (20) studied approximately 100 - 150 morphologically normal sperm 

(according to the strict criteria of Kruger [8]) from both normal and infertile couples and 
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found that normal morphology is not an absolute indicator for the selection of genetically 

normal sperm. 

Since a common factor between sperm immaturity and aneuploidies is HspA2 

expression, it has been proposed by the Huszar laboratory that diminished expression of 

HspA2 leads to defects both in meiotic events and in cytoplasmic extrusion. It is thus 

anticipated that immature sperm which show cytoplasmic retention will also have higher 

incidence of disomies and aneuploidies due to meiotic impairments. (4) Although 

significant correlations (r = 0.7 - 0.78) have been found between proportions of immature 

sperm with cytoplasmic retention and total disomies within a sample (4), literature 

examining a direct association between numerical chromosomal abnormalities and 

individual sperm morphology is extremely limited and controversial. Abnormal sperm 

with large heads, micro-heads, two heads, two midpieces, or two tails have been 

examined and found to have nearly a 30-fold increase in aneuploidy rate over normal 

spermatozoa, independent of male fertility status. (7) Particularly high frequencies of 

aneuploidy and diploidy were found in spermatozoa with enlarged heads (40%). (7) 

Other studies have reported an increase in the incidence of structural chromosome 

abnormalities in sperm with amorphous, round, and elongated heads (26.1%) as 

compared to normal sperm (6.9%), but no significant difference in aneuploidy frequency. 

(1) 

In order to better assess the relationship between sperm shape and chromosomal 

aberrations, it is necessary to study the same spermatozoon for both parameters. The 

most straightforward technique for visualizing chromosomal aneuploidies is fluorescent 

in situ hybridization (FISH). Preliminary studies of this association using in-situ 
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hybridization have been hindered by methodological factors inherent in the hybridization 

procedure, namely the requirement for DNA decondensation and denaturation, which 

increase cell size and have an unknown effect on cell shape. However, if cell shape were 

known to remain unchanged by the decondensation process, the association between 

individual sperm shape and aneuploidy could be easily examined using the FISH method. 

This question was studied in the Huszar laboratory, and I became part of this effort in 

fulfilling the Yale School of Medicine thesis requirement. 

Fluorescent In Situ Hybridization 

The principle behind FISH is that probes of single stranded DNA can be 

synthesized to incorporate fluorescent molecules (or antigenic sites that are recognized by 

fluorescent antibodies), and be hybridized to target DNA for direct visualization and 

mapping of all locations bearing the specified sequence. In order for hybridization to 

occur, however, DNA must first be decondensed and denatured. Sperm DNA is packed 

even more tightly than that in somatic cells because nuclear histones are replaced by 

sperm-specific protamines during spermatogenesis. Tightly coiled loops of sperm DNA 

are held in place by disulfide bonds formed when sulfhydryl groups on the protamines are 

oxidized. DNA decondensation can be achieved by the addition of dithiothreitol (DTT), 

which reduces the protamine disulfide bonds, unfolding the loops of DNA. 

Ideally, when performing ICSI, the direct injection of chromosomally abnormal 

sperm into human oocytes would be avoided, minimizing the risk of aberrant fertilization. 

(1) In order to do this, a method of normal haploid sperm selection that is fast, 

inexpensive, and accurate is required. FISH is an easy and reliable method to assess 
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ploidy, but it is both costly and time consuming, and, more importantly, sperm which 

have undergone FISH cannot be subsequently used for ICSI. Because ICSI routinely uses 

microscopic visualization for sperm selection, selection based on normal morphology is 

tempting, but an association between aneuploidies and aberrant sperm shape has never 

been explored at the level of the individual sperm. 

Study Aims 

The purpose of our work is ultimately to examine a potential relationship between 

sperm morphology and aneuploidy. We plan to do this by performing FISH on 

spermatozoa and determining whether the sperm which show aneuploidies are also those 

with abnormal morphology. As a subset of our work, the present study seeks to examine 

whether sperm with normal and abnormal morphology will maintain their original shape 

after DNA decondensation and denaturation. We approached this question using 

objective, computer-assisted morphometry of individual spermatozoa in the native shape 

and after decondensation and denaturation, with consideration of sperm in various 

morphological categories. The result of this study, namely that after decondensation and 

denaturation the original sperm shape is preserved, will enable us to thoroughly elucidate 

the relationship between sperm morphology and aneuploidy using FISH. 
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METHODS 

Study Population 

The study population consisted of men who presented for semen analysis at the 

Sperm Physiology Laboratory of the Department of Obstetrics and Gynecology at the 

Yale University School of Medicine. Samples with low sperm concentrations were 

selected because earlier work has demonstrated that these ejaculates are more likely to 

contain a high proportion of immature sperm with cytoplasmic retention, abnormal 

morphology, and chromosomal aneuploidies. (4, 21) In all, 21 slides from eight different 

patients were examined in this study. All studies were approved by the Human 

Investigation Committee of the Yale University School of Medicine. 

Preparation of Slides 

Aliquots of liquefied semen (100 - 200 pL) from eight patients (mean 

concentration 16.9 ± 3.1 million sperm/mL; mean motility 43.2 ± 2.7 %) were diluted 

with serum physiologic saline containing 0.3% BSA and 30 mM imidazole (SAIM) to a 

final volume of 5 - 8 mL. Semen samples were centrifuged at 400 x g for 18 minutes at 

24° C. Supernatant was discarded and pelleted sperm were resuspended in the saline- 

imidazole solution to a concentration of 10-25 million sperm/mL. Sperm slides were 

prepared by smearing lOpL of sample onto clean glass slides and allowing them to air- 

dry. Slides were subsequently fixed in a 3:1 methanol-acetic acid (MAA) solution for 15 

minutes and then air-dried for 20 minutes at room temperature. Slides were dehydrated in 

70%, 85%, and 100% ethanol for five minutes each, and then air-dried for 20 minutes at 

room temperature. 
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Imaging of Sperm 

The basic experimental design, including preparation of slides, pre- and post¬ 

decondensation imaging of sperm, and morphometric analysis, is summarized in Figure 2. 

Fixed slides were stained with one drop of antifade mounting medium 

(Vectashield™; Vector Laboratories, Burlingame, CA), and images were captured via a 

black-and-white digital camera using the 40x phase-contrast objective of an Olympus 

BX51 microscope (Olympus, Melville NJ). Although antifade mounting medium is not a 
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dye, its use proved superior to Coomassie Blue (which had previously been used) for 

producing images with consistently dark sperm heads and tails. Such contrast is 

necessary to establish a threshold level for the separation of sperm from background for 

the Metamorph assessments. 

Phase-contrast images of sperm fields were digitized using a Sanyo VCB-3524 

B/W CCD camera (Sanyo, Richmond, IN) and the computer program Metamorph 

(Version 4.6rl, Universal Imaging Corporation, Downingtown, PA) and were saved. The 

X, Y coordinates of each field digitized were noted on the microscope stage. In addition, 

the characteristic configuration of sperm cells in each field was sketched in a notebook in 

order to aid in relocation of the sperm field. 

After the decondensation step, the same fields as had been studied initially were 

recaptured, and the now-decondensed sperm fields were digitized and saved for 

subsequent analysis using Metamorph. 

Decondensation 

Slide cover slips that were placed for initial microscopic observation were 

carefully removed by rinsing with distilled water. Slides were placed in a humidity 

chamber and decondensed by flooding with 1250 pL of a 10 mM solution of 

dithiothreitol (DTT) (Sigma, St. Louis, MO) in 0.1 M Tris-HCl (pH 8.0) (American 

Bioanalytical, Natick, MA) for 20 minutes at room temperature. The DTT solution was 

discarded, and slides were returned to the humidity chamber and flooded with 1000 pi of 

a lOmM solution of LIS (lithium 3,5-diiodosalicylic acid) (Sigma) in 0.1 M Tris-HCl (pH 

8.0). Slides were incubated in the dark for 2.5 hours at room temperature. The LIS 
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solution was discarded and slides were rinsed gently in distilled water. Slides were 

stained, as initially, with one drop of Vectashield antifade mounting medium before new 

cover slides were placed on them. 

Calibration 

Calibration was performed by viewing an objective micrometer scale (OB-M 

1/100) at 40x magnification and digitizing the image with the Metamorph program. 

Using the Metamorph drawing feature, a line was drawn on the micrometer image, and its 

length was set to 10 pm. The automated, computerized conversion of pixels to pm set 

our calibration at 0.29 pm/pixel. 

Computerized Morphometry Measurements 

After digitizing the images, Metamorph overlay tools were used to delineate the 

head versus tail regions of individual spermatozoa. Images were viewed using an 

inclusive threshold for dark objects in order to identify regions for measurement. 

Metamorph was used to measure sperm head parameters with selected 

morphometry standards inherently defined by the program. (Figure 3.) The relevance of 

each to sperm head morphology is straightforward: area (area of entire object), perimeter 

(distance around edge of object, measuring from midpoints of each pixel that defines its 

border), long axis of the head (length of longest chord through the object), short axis of 

the head (width measured perpendicular to the longest chord), and shape factor (47iA/P2, a 

value between 0-1 representing how closely object approximates a circle, with 1 being a 

perfect circle). The sperm tail length was measured as fiber length (length of an object, 
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assuming that it is fiber-like in nature). In addition, we developed two sperm head 

parameters that are not standard to the Metamorph program which reflect sperm cellular 

maturity: roundness ratio (short axis of the head: Song axis of the head), and the ratio of 

tail length to the long axis of the head. These parameters were calculated using Microsoft 

Excel (Microsoft, Redmond, WA). 

Figure 3: Metamorph-generated sperm head and tail parameters. 

Morphological Classification by Sperm Head 

Spenn cells were classified into four groups by visual inspection (Figure 4): 

symmetrical (n = 115), or sperm that were normally shaped with oval, symmetrical heads 

and axial tail insertion; irregular (n = 115), or spenn with large, round, or asymmetrical 

heads, bulging midpieces, and/or abaxial tail insertions; asymmetrical (n = 115), or sperm 

that did not satisfy the descriptions of symmetrical or irregular spenn because of tapered 
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and/or elongated or slightly rounded heads, moderately enlarged midpieces, slightly 

asymmetrical postacrosomal regions, etc.; or amorphous (n = 50), or sperm with grossly 

Figure 4: Pre- and post-decondensation images of sperm in the various shape categories. 

Sperm were classified according to their head shape as symmetrical, asymmetrical, 

irregular, or amorphous. Observe the maintenance of shape in the decondensed state. 

Magnification ~xl500. 

asymmetric and distorted heads. This classification distinguishes among the various 

morphologic types of mature and immature spermatozoa; it has no relationship to the 
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andrological or clinical assessments of normal or abnormal sperm morphology. 

Classification was performed visually in order to more accurately simulate the selection 

of sperm for ICSI, in which samples cannot be fixed and, therefore, cannot be evaluated 

using Metamorph. 

Statistical Analysis 

Sperm shape parameters before and after decondensation were compared using the 

paired student t-test with SigmaStat (Version 2.0, Jandel Scientific Corporation, San 

Rafael, CA) within each shape category. Percent change in the mean for each parameter 

after decondensation was also calculated. Differences before and after decondensation 

within each of the different sperm shape categories (symmetrical, asymmetrical, irregular, 

and amorphous) were analyzed using one-way ANOVA and post hoc Dunn tests with a p 

< 0.05 level of significance. 

We determined the interrater reliability of Metamorph assessments by measuring 

the various parameters five different times in the same sperm (n = 70 sperm; 3500 

measurements in all). The measurements were performed by two different investigators 

working independently (Catalanotti and Celik-Ozenci). 

Denaturation 

Because the FISH protocol calls for decondensation followed by denaturation to 

make DNA fully accessible to probes, we tested the effect of denaturation on the size and 

shape of decondensed sperm. One hundred sperm from each of three men (n = 300) were 

studied. Decondensed sperm (as described above) were subsequently treated with 
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denaturation solution (28 mL of 70% formamide and 4 mL of 20 x SSC [1 x SSC: 0.15 M 

sodium chloride and 0.015 M sodium citrate]) and then heated to 75° C for ten minutes. 

The denatured slides were immediately cooled to -20° C in 70% ethyl alcohol for two 

minutes and then in 100% ethyl alcohol for two minutes. Slides were allowed to air-dry 

and were stained with one drop of Vectashield antifade mounting medium for imaging. 

Validation of Methods 

To ensure that antifade mounting medium for fluorescence has no effect on sperm 

size and shape and to be sure that its use does not block DNA decondensation with DTT, 

the above experiment was performed substituting one drop of distilled water for mounting 

medium (n = 30). All Metamorph measurements were compared to a trial using the same 

sperm subsequently mounted with Vectashield antifade mounting medium (20 sperm 

each from the symmetrical, asymmetrical, and irregular groups, and 10 amorphous sperm; 

n = 70) using the paired student t-test. 

To demonstrate that changes in sperm size are directly related to the DTT-induced 

decondensation and not to the swelling effect of LIS, three slides from each semen 

sample were incubated with DTT alone, with LIS alone, with LIS followed by DTT, or 

with DTT followed by LIS. The sperm head dimensions were determined before and 

after treatment. 

To ensure that the majority of sperm undergo decondensation in response to DTT- 

LIS treatment and that sperm selected for measurements are typical in this regard, we 

reviewed 100 sperm from each of the eight men (800 sperm in all). We determined the 

percentage that appeared to be decondensed, over-decondensed, and not decondensed. 
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Sperm that were not decondensed or that were over-decondensed were not further 

evaluated in this study. 

FISH Study 

Preliminary FISH studies relating sperm morphology and aneuploidy were 

performed by Celik-Ozenci (22) using the method described by Kovanci, et al. (23) 

Thirty slides with sperm from 15 men were fixed and decondensed using DTT and LIS 

solutions, as described above. Overall, 1286 spermatozoa were visualized and evaluated 

for both morphology and aneuploidy. Three probes were used for FISH (Vysis, Downers 

Grove, IL): (1) X chromosome: Xp 11 -Xp21 labeled with biotin-16-dUTP by nick 

translation; (2) Y chromosome: Vysis alpha satellite rhodamine-labelled probe; (3) 

chromosome 17: alpha satellite sequence-specific probe labeled with both biotin-16- 

dUTP and digoxigenin-11-dUTP by nick translation. A 12 pL sample of hybridization 

mixture (50% formamide and 10% dextran sulfate in 2xSSC) containing the probes was 

denatured at 75 - 80° C for eight minutes and applied to the slides. The X, Y, and 17 

probes were simultaneously hybridized to the slides in a moist chamber for 12-14 hours. 

Sperm slides were incubated with avidin-FITC (fluorescence green) for biotin-labeled 

probes, and anti-digoxigenin-rhodamine (fluorescence red) for digoxigenin-labeled 

probes. The use of both biotin and digoxigenin labels on the probe for chromosome 17 

resulted in a yellow color (the combination of red and green fluorescence gives yellow). 

Slides were stained with 4’-6, diamidino-2-phenylindole, mounted with antifade, and 

viewed for fluorescence. Sperm were considered disomic when they showed two 

fluorescent domains of same color, comparable in size and brightness, in approximately 
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the same focal plane, clearly positioned inside the edge of the sperm head and at least one 

domain apart. Diploidy was recognized by the presence of two double fluorescence 

domains with the above criteria. 

Slides were also viewed with a 40x phase-contrast objective in order to assess 

morphology and to exclude apparent diploidy in two spermatozoa in close proximity to 

each other. The 1286 spermatozoa were classified as symmetrical, asymmetrical, 

irregular, or amorphous by visual inspection, and the distribution of haploid, disomic, and 

diploid sperm within each category was determined. In addition, two investigators 

independently assessed the sperm for Kruger strict morphology scores (8). Data were 

statistically analyzed using one-way ANOVA rank tests and post hoc Dunn tests. 
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RESULTS 

Decondensation and Relocalization of Sperm Fields 

Overall, our decondensation protocol was effective, as 82.2% ± 2.2% of sperm 

were decondensed, 12.2% ± 2.0% were over-decondensed, and 5.0% ± 1.2% were not 

decondensed (n = 800) (data not shown). Sperm that were over-decondensed or not 

decondensed were not evaluated in this study. In evaluating the effects of decondensation 

on sperm shape in the eight men studied, we digitized 307 fields of the native, pre- 

decondensed sperm representing all four shape categories of spermatozoa. Of these 307 

fields, we were able to relocalize 277 fields (90%) after the decondensation step, with 395 

sperm available for analysis in all. (Figure 5.) 

Figure 5: Sperm field before (a) and after (b) decondensation. 

Note the characteristic configuration of fixed sperm, aiding in the relocalization of 

sperm fields. Also note the visual preservation of sperm head shape. 

Magnification ~x 1500. 

We performed morphological classification of the sperm heads by conventional 

microscopic assessment. Because the irregular and amorphous types were more common 
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in certain samples, while samples from any man have many symmetrical and 

asymmetrical sperm, we captured more fields in samples from some men than from 

others. 

Controls 

Antifade application does not affect sperm size or shape, as no significant 

differences were seen between individual sperm dyed with water and with anti fade in any 

parameters measured (n = 30)(data not shown). Interobserver agreement was found in 

96.6% ± 0.6% (data not shown) of measurements. The highest variation between 

observers was seen in the assessment of head area (5.9%) and the lowest variation in the 

assessment of short axis (2.4%), whereas the perimeter, long axis, and tail length 

measurements all showed a 2.9% variation. 

Sperm treated with DTT showed less than 10% increases (p < 0.05, data not 

shown) in each head parameter, with no significant changes in shape factor. Sperm 

treated with LIS alone showed less than 20% increases in head parameters and head area 

(p < 0.001 and p = 0.005, respectively). The combined effects of DTT and LIS, when LIS 

is applied first, resulted in a change in head size of only 25%. However, sperm treated 

with DTT and then LIS, as in the present protocol, showed increases comparable to those 

indicated by our data (area: + 40%; perimeter: + 22%, long axis: + 22%, short axis: 

+15%; all p < 0.001, with no significant changes in shape factor; n = 250). No significant 

differences were noted after denaturation in any parameters measured by Metamorph (n = 

300) (data not shown). 
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Decondensation Increases Sperm Size 

Significant differences were seen in the comparisons of sperm dimensions in the 

native and decondensed states across all groups. All head parameters increased 

significantly as a result of decondensation (p < 0.001 for all). Mean values for the initial 

and post-decondensation parameters within each morphological category are shown in 

Table 1. Decondensation-related changes were consistent across shape categories, as 

similar increases in all head parameters were observed within a narrow range. (Table 2.) 

For example, the four values were very close in change in perimeter (mean and range: 

23.5% and 5pm, respectively), in long axis (18.5% and 6 pm, respectively), and in short 

axis (21.8% and 2pm, respectively). The area parameter did not quite follow this pattern 

because the amorphous sperm group showed a higher percentage change. However, the 

areas of the symmetrical, asymmetrical, and irregular groups were similar (52.3% and 

7pm, respectively). Because the tail is a one-dimensional object lacking its own DNA, its 

length was not affected by the decondensation, and it is not considered in the tables. 

Conservation of Sperm Shape after Decondensation 

Initial shape was preserved across all morphological categories as measured either 

by roundness ratio, by shape factor, or by both. (Table 3.) Symmetrical sperm showed a 

0% change in roundness ratio (p > 0.05) and a 4% change in shape factor (p < 0.001). 

Asymmetrical sperm showed a 4% change in roundness ratio (p < 0.001) and a 0% 

change in shape factor (p > 0.05). Irregular sperm showed a 3% change in roundness 

ratio (p < 0.001) and a 1.2% change in shape factor (p > 0.05). Amorphous sperm 

showed a 0% change in roundness ratio (p > 0.05) and a 1.3% change in shape factor (p 



www.manaraa.com



www.manaraa.com

24 

> 0.05). Thus, significant changes included only very small increases in roundness ratio 

among asymmetrical and irregular sperm and in shape factor among symmetrical sperm, 

with no change greater than 4%. 

FISH Obsen’ations 

Of the spermatozoa studied, 367 were symmetrical, 368 were asymmetrical, 504 

were irregular, and 47 were amorphous (n - 1286). As Figure 6 indicates, 

relationships between numerical chromosomal aberrations and sperm shapes were 

inconsistent. Haploid and aberrant nuclei were seen in the heads of sperm with 

both normal and abnormal shapes. Disomic and diploid sperm were present in all 

morphological categories, with their frequency increasing along with increased 

shape abnormality. (Table 4.) There was a significantly higher frequency of 

aneuploidies in the irregular and amorphous shape groups as compared to the 

symmetrical and assymetrical categories (p < 0.001). However, even "normal" 

appearing symmetrical spermatozoa included 68 sperm (of the 386 total aneuploid 

sperm) with numerical chromosomal abnormalities. The Kruger strict morphology scores 

of the haploid (n = 900), disomic (n = 256), and diploid (n = 13) sperm were 24%, 10%, 

and 1%, respectively. 
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Figure 6: Shape and chromosomal properties of decondensed sperm with phase-contrast 

microscopy and FISH. Left'. Sperm with normal morphology; Right: Sperm with 

abnormal morphology. Top: Sperm with haploid nuclei; Middle: Sperm with disomic 

nuclei (dy); Bottom: sperm with diploid nuclei (dp). 

Magnification x600. 
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DISCUSSION 

Several laboratories have reported data supporting a relationship between 

abnormal sperm morphology and increased frequency of aneuploidies in semen samples, 

but not within a single sperm. It has been suggested that abnormal sperm morphology, 

due to arrested sperm maturation and cytoplasmic retention, and increased numerical 

chromosomal aberrations are related to meiotic and spermiogenetic errors associated with 

diminished expression of HspA2. (4, 14) To our knowledge, however, the common 

occurrence of these two attributes within the same sperm cell has not previously been 

studied. The primary reason for the lack of such data is uncertainty concerning the 

effects of decondensation and denaturation, which are necessary for FISH, on 

morphological characteristics of the spermatozoa studied. 

To study the potential relationship between sperm morphology and numerical 

chromosomal aberrations in the same sperm, we examined whether original sperm shape 

is conserved after the decondensation and denaturation steps that are necessary in order to 

make DNA accessible for hybridization by FISH probes. Although a recent brief 

communication reported that FISH studies may be carried out in sperm without a 

decondensation step (24), the data lacked controls and examined < 1000 sperm in total, 

rendering it of questionable merit. 

We utilized the morphometry software, Metamorph, for objective measurements 

of sperm both before and after the decondensation process. To examine potential 

differences in decondensation-related changes between sperm with normal and abnormal 

shapes, the sperm dimensions in the native and decondensed states were compared within 

symmetrical, asymmetrical, irregular, and amorphous sperm categories. We analyzed the 
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maintenance of individual sperm shape in each group after decondensation. The data 

have been confirmatory across all morphological categories: sperm heads become larger 

after decondensation, but the head shape remains conserved, as evidenced by the 

preservation of shape factor and roundness ratio. 

Decondensation consistently increases sperm head size. For each parameter 

measured, including head perimeter, long axis, short axis, and area, the percent increases 

as a result of decondensation were quite similar across morphological categories, with the 

exception of a larger percent increase in the mean head area among amorphous sperm. It 

is unclear why amorphous sperm heads increase in area to a much greater extent as a 

result of decondensation, but it may relate to their immature membrane structures in light 

of their potential for arrested maturation. (25) 

Decondensation does not change sperm shape. Most sperm studied showed no 

significant change in shape factor or roundness ratio as a result of decondensation, and 

those that did showed only very small changes (< 4%). Sperm shape is preserved, as 

determined not only visually, but also by objective morphometry, after the 

decondensation and denaturation protocols. The increases in the dimensions contributing 

to the shape factor and roundness ratio are, therefore, proportional. Sperm that undergo 

FISH maintain their original shapes with high fidelity. Thus, post-FISH shape can be 

further used to evaluate relationships between sperm shape and numerical chromosomal 

abnormalities. 

We have carefully validated our methods by testing the technical aspects of our 

protocol. We established that the mounting medium does not affect decondensation or 

perceived sperm size after digitization. The overall efficiency of decondensation was 
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high, with 82.0% of sperm being appropriately decondensed and only 5.0% and 13.0% of 

the sperm remaining non-decondensed and over-decondensed, respectively. The 

interobserver agreement of Metamorph measurements was greater than 96%. Finally, we 

also investigated the effects of denaturation on sperm morphology, noting that after the 

decondensation process, denaturation does not cause any further appreciable increase in 

sperm head dimensions, and the shape of sperm is still preserved. 

Our preliminary FISH observations indicate that aneuploid nuclei may be found 

within abnormally or normally shaped sperm heads, but occur with higher frequency in 

amorphous sperm. Even the most normal appearing sperm could be disomic or diploid, 

although diploidy is less prevalent among sperm with normal shape. Thus, visual 

assessment is likely an unreliable method for ICSI selection of sperm. These data are in 

agreement with those published by Ryu, et al. wherein it was found that normal 

morphology is not an absolute indicator for the selection of genetically normal sperm. 

(20) In that study, normal sperm from teratozoospennic men showed a 1.8 5.5% 

aneuploidy rate as compared to 0 - 2.6% among normal sperm in fertile controls. 

Normal morphology likely does not correlate perfectly with genetic normality, but 

abnormal head shape due to cytoplasmic retention may be associated with an increased 

rate of aneuploidy, as shown in the work of Kovanci et al. (4) 

Given the increased frequency of numerical chromosomal abnormalities among 

semen samples from infertile men who are ICSI candidates, counseling for infertile 

couples undergoing ICSI should focus on the increased risk of aneuploidies, and on the 

phenotypic outcomes of trisomy for different chromosomes, especially sex chromosomes. 
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At present, it is generally accepted that there is an increase of at least 1% in the risk of 

sex chromosome abnormalities for children conceived by ICSI. (3) 

Counseling to couples pursuing ICSI may be particularly important in cases 

where morphologically abnormal or immature sperm are selected for injection, as in men 

with 100% abnormal sperm forms. In these men, the potential to transmit abnormal 

genetic traits to the next generation is a major concern. Some authors have suggested that 

ICSI should not be recommended to patients presenting with macrocephalic spermatozoa 

given their increased potential for aneuploidies as compared to sperm with other 

abnormalities (i.e. shortened flagellae, globozoospermia, or irregular acrosomes). (19, 26) 

Preliminary evidence suggests that only sperm with normal morphology should be 

selected for ICSI, but even this precaution does not guarantee haploidy. Given the results 

of this study, that DNA decondensation and denaturation as required by the FISH 

protocol do not change sperm shape, the Huszar laboratory plans to further examine the 

relationship between sperm shape and numerical chromosomal abnormalities at the 

cellular level using visual inspection, FISH, and the Metamorph program. Since our 

preliminary work suggests an imperfect correlation, the Huszar laboratory will also 

evaluate sperm selection based on the presence of absence of certain plasma membrane 

receptors that are associated with normal sperm development. (27, 28) 
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